

Teaser

Where do 90% of ML/AI models get deployed?

Where do 90% of ML/AI models get deployed?

(Allegedly, and may be outdated)

https://towardsdatascience.com/why-90-percent-of-all-machine-learning-models-never-make-it-into-production-ce7e250d5a4a

Where do 90% of ML/AI models get deployed?

ML in production: expectation

- 1. Collect data
- 2. Train model
- 3. Deploy model

4.

Reality

Many models don't get deployed for...

Things Outside Model Performance Metrics

Business Sponsorship

Good Model = Good Product?

From Model to Product: Implement ML Effectively for Insurance Underwriting

11.05.2024 at RE•WORK

Langyi Tian

Senior Data Scientist

From Model to Product: Implement ML Effectively for Insurance Underwriting

Agenda

- Teaser: Are Our Models Getting Implemented?
- Introduction: Model is Part of a Product
- 3 Case Study: Implementing GBMs for Insurance Underwriting

Introduction

About Me

Langyi Tian

- Senior Data Scientist, Homesite Insurance
- Background in finance and social science
- Columbia '19, CUHK '18

Homesite^a

- Based in Boston, MA. Part of American Family Group
- P&C, auto, commercial

Analytics Tools & Modeling

- Mixed manpower of actuaries, DS, and engineers
- Rating tools, dashboards, rating models, etc.

ML/Al in Insurance

Use cases

- Pricing
- Inspection
- Customer Service
- Retention
- ... And

Underwriting

- Targeting **unpriceable** high risks at far right tail
- More crucial to profitability
 - Increasing inflation
 - Frequent extreme weather events

. . .

Model is Part of a Product

Requirements

Predictive

Predicts risk better than alternatives (e.g. actuarial analysis)

Regulatable

Transparent and explainable for regulator considerations

Business Oriented

Flexible to adapt to market, easy to implement, transparent UX

Stakeholders

Case Study: Implementing GBMs for Underwriting

Overview

Before

Approach:

- Automated underwriting
- Univariate/bivariate underwriting rules.

Result:

Declining **over 30%** Homeowners quotes

Issue:

Particularly bad for a **partner-based** company

After

Goal:

Decline less without sacrificing profit

Approach:

- A **2-stage** Gradient Boosting Machine (GBM) model
- More predictors
- Custom built IT solution to **AWS microservice**
- Additional **control table** for fine tuning DNQ
- Dashboard for **monitoring/simulating** DNQ results

Result:

- Drop in DNQ (Do Not Quote) rate by **more than 10**%
- No significant loss difference

Modeling Technique

Balancing Technical/Business Needs

Two-stage Design:

- Stage 1 treat distinct causes of loss
- Stage 2 targets **small segments of less profitable business** with optimized weights

Gradient Boosting Machine (GBM):

- Moderately **explainable** with sample trees and variable importance plots
- GLM, GBM, XGB tested. Marginal difference in performance.

Modeling Technique

Ensure Consistency in Input/Output

Common Predictors

Property-Related e.g. Replacement Cost

Personal e.g. Age of Customer

Credit Score

Insured Limits

Geographical Predictors

Historical Industry Losses

Catastrophe Losses

Business Requirement

Univariate UW rules

- Prior Claims
- Flat Roof
- Wood Stove

...

Implementation

Faster Modeling & Easier for IT

Before:

- 500+ trees, all custom coded and QA-ed by IT
- **Unnecessary cost** from development, test and maintenance

After:

- Train in H2O AutoML (Many alternatives such as VertexAI, DataRobot, SageMaker)
- Output models as Java objects for IT. Deployed as AWS microservice
- **Shorter time to market** with rapid implementation

Control Table

Additional Layer of Control for Business Needs

Dashboard

More Transparency for Product Managers

Summary

From Model to Product: Implement ML Effectively for Insurance Underwriting

Balance Technical & Business Needs

Consistency in Input / Output

Faster & Easier Implementation

Enable Flexibility Outside Model Tools for Monitoring / Making Informed Decisions

Any questions?

<u>ltian@homesite.com</u> / Langyi Tian on LinkedIn